Anthracite based carbon additive (CAC) It is made from well-selected Ningxia Taixi anthracite . | Spe
Grad | F.C(
%) | Ash(
%) | Moisture(
%) | V.M(
%) | S | N | Size | |----------------|------------|------------|-----------------|------------|-------------|------------|------------------------| | SuperGra
de | 95min | 4.0max | 0.5max | 1.0max | 0.25m
ax | 0.3m
ax | As
client's
dema | | 1st Grade | 94min | 4.5max | 0.5max | 1.0max | 0.3ma
x | 0.3m
ax | nd | | 2stGrade | 93min | 6max | 1.5max | 1.5max | 0.35m
ax | 0.4m
ax | | | 3stGrade | 92min | 6.5max | 1.5max | 1.5max | 0.35m
ax | 0.4m
ax | | | 4stGrade | 90min | 8.5max | 1.5max | 1.5max | 0.35m
ax | 0.4m
ax | | | 5stGrade | 85min | 13max | 3max | 1.5max | 0.4ma
x | 0.4m
ax | | | 6stGrade | 80min | 16max | 3max | 1.5max | 0.4ma
x | 0.4m
ax | | | Packing | As client | 's demand | | | | | | ## **Calcined petroleum coke(CPC)** It is calcined in the 1350°C calcined kiln in rank type to obtain the lower volatile highest grade. | Spec
Grade | F.C(%
) | V.M(%
) | Moisture(
%) | S(%) | Ash(%
) | N(ppm) | Siz
e | |---------------|------------|------------|-----------------|------------|------------|--------------|----------| | CPC | 98min | 0.7max | 0.5max | 0.7ma
x | 0.5max | 10000ma
x | * | | CPC | 98min | 0.7max | 0.5max | 0.5ma
x | 0.5max | 10000ma
x | | | CPC | 98min | 0.7max | 0.5max | 0.1ma
x | 0.5max | 10000ma
x | | | Packin
g | As clients | s' demands | | | | | | ## **Graphitized Petroleum Coke(GPC)** It is made from low sulfur and low nitrogen petroleum coke by $2500-3500^{\circ}\text{C}$ temperature graphite annealing. | Spe
Grad
e | F.C(
%) | Ash(
%) | Moisture(
%) | V.M(
%) | S(%) | N(%) | Size(m
m) | |------------------|--------------------|------------|-----------------|------------|-------------|------------|--------------| | Gpc | 98.5mi
n | 0.5max | 0.5max | 0.5max | 0.05m
ax | 300m
ax | * | | Packin
g | As clients' demand | | | | | | |